\(\int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x) \, dx\) [496]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [F(-1)]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 35, antiderivative size = 85 \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x) \, dx=\frac {2 a (2 A+3 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}+\frac {2 a A \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}} \]

[Out]

2/3*a*A*sec(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+2/3*a*(2*A+3*B)*sin(d*x+c)*sec(d*x+c)^(1/2)/d/(a+
a*cos(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 85, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.086, Rules used = {3040, 3059, 2850} \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x) \, dx=\frac {2 a (2 A+3 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d \sqrt {a \cos (c+d x)+a}}+\frac {2 a A \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}} \]

[In]

Int[Sqrt[a + a*Cos[c + d*x]]*(A + B*Cos[c + d*x])*Sec[c + d*x]^(5/2),x]

[Out]

(2*a*(2*A + 3*B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*d*Sqrt[a + a*Cos[c + d*x]]) + (2*a*A*Sec[c + d*x]^(3/2)*S
in[c + d*x])/(3*d*Sqrt[a + a*Cos[c + d*x]])

Rule 2850

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(3/2), x_Symbol] :> Sim
p[-2*b^2*(Cos[e + f*x]/(f*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), x] /; FreeQ[{a, b,
c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3040

Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[(a + b*Sin[e + f*x])^m*((
c + d*Sin[e + f*x])^n/(g*Sin[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 3059

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n
 + 1)*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(2*d*(n +
1)*(b*c + a*d)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \frac {2 a A \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}+\frac {1}{3} \left ((2 A+3 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+a \cos (c+d x)}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 a (2 A+3 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}+\frac {2 a A \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.12 (sec) , antiderivative size = 57, normalized size of antiderivative = 0.67 \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x) \, dx=\frac {2 \sqrt {a (1+\cos (c+d x))} (A+(2 A+3 B) \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x) \tan \left (\frac {1}{2} (c+d x)\right )}{3 d} \]

[In]

Integrate[Sqrt[a + a*Cos[c + d*x]]*(A + B*Cos[c + d*x])*Sec[c + d*x]^(5/2),x]

[Out]

(2*Sqrt[a*(1 + Cos[c + d*x])]*(A + (2*A + 3*B)*Cos[c + d*x])*Sec[c + d*x]^(3/2)*Tan[(c + d*x)/2])/(3*d)

Maple [A] (verified)

Time = 9.58 (sec) , antiderivative size = 60, normalized size of antiderivative = 0.71

method result size
default \(-\frac {2 \cot \left (d x +c \right ) \left (\sec ^{\frac {5}{2}}\left (d x +c \right )\right ) \left (\cos \left (d x +c \right )-1\right ) \left (2 A \cos \left (d x +c \right )+3 B \cos \left (d x +c \right )+A \right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}}{3 d}\) \(60\)
parts \(-\frac {2 A \cot \left (d x +c \right ) \left (\sec ^{\frac {5}{2}}\left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (2 \left (\cos ^{2}\left (d x +c \right )\right )-\cos \left (d x +c \right )-1\right )}{3 d}-\frac {2 B \cos \left (d x +c \right ) \cot \left (d x +c \right ) \left (\sec ^{\frac {5}{2}}\left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (\cos \left (d x +c \right )-1\right )}{d}\) \(100\)

[In]

int((A+B*cos(d*x+c))*sec(d*x+c)^(5/2)*(a+cos(d*x+c)*a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/3/d*cot(d*x+c)*sec(d*x+c)^(5/2)*(cos(d*x+c)-1)*(2*A*cos(d*x+c)+3*B*cos(d*x+c)+A)*(a*(1+cos(d*x+c)))^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.76 \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x) \, dx=\frac {2 \, {\left ({\left (2 \, A + 3 \, B\right )} \cos \left (d x + c\right ) + A\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{3 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )} \sqrt {\cos \left (d x + c\right )}} \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(5/2)*(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

2/3*((2*A + 3*B)*cos(d*x + c) + A)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c)/((d*cos(d*x + c)^2 + d*cos(d*x + c))*
sqrt(cos(d*x + c)))

Sympy [F(-1)]

Timed out. \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x) \, dx=\text {Timed out} \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)**(5/2)*(a+a*cos(d*x+c))**(1/2),x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 380 vs. \(2 (73) = 146\).

Time = 0.35 (sec) , antiderivative size = 380, normalized size of antiderivative = 4.47 \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x) \, dx=\frac {2 \, {\left (\frac {A {\left (\frac {3 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {4 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {\sqrt {2} \sqrt {a} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}\right )} {\left (\frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + 1\right )}^{2}}{{\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {5}{2}} {\left (-\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {5}{2}} {\left (\frac {2 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {\sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + 1\right )}} + \frac {3 \, B {\left (\frac {\sqrt {2} \sqrt {a} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {2 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {\sqrt {2} \sqrt {a} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}\right )} {\left (\frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + 1\right )}^{2}}{{\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {5}{2}} {\left (-\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {5}{2}} {\left (\frac {2 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {\sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + 1\right )}}\right )}}{3 \, d} \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(5/2)*(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

2/3*(A*(3*sqrt(2)*sqrt(a)*sin(d*x + c)/(cos(d*x + c) + 1) - 4*sqrt(2)*sqrt(a)*sin(d*x + c)^3/(cos(d*x + c) + 1
)^3 + sqrt(2)*sqrt(a)*sin(d*x + c)^5/(cos(d*x + c) + 1)^5)*(sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 1)^2/((sin(d
*x + c)/(cos(d*x + c) + 1) + 1)^(5/2)*(-sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(5/2)*(2*sin(d*x + c)^2/(cos(d*x
+ c) + 1)^2 + sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 1)) + 3*B*(sqrt(2)*sqrt(a)*sin(d*x + c)/(cos(d*x + c) + 1)
 - 2*sqrt(2)*sqrt(a)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + sqrt(2)*sqrt(a)*sin(d*x + c)^5/(cos(d*x + c) + 1)^5
)*(sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 1)^2/((sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(5/2)*(-sin(d*x + c)/(cos
(d*x + c) + 1) + 1)^(5/2)*(2*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 1)))/
d

Giac [F(-1)]

Timed out. \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x) \, dx=\text {Timed out} \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(5/2)*(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Timed out

Mupad [B] (verification not implemented)

Time = 1.17 (sec) , antiderivative size = 114, normalized size of antiderivative = 1.34 \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x) \, dx=\frac {2\,\sqrt {a\,\left (\cos \left (c+d\,x\right )+1\right )}\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\left (2\,A\,\sin \left (c+d\,x\right )+3\,B\,\sin \left (c+d\,x\right )+2\,A\,\sin \left (2\,c+2\,d\,x\right )+2\,A\,\sin \left (3\,c+3\,d\,x\right )+3\,B\,\sin \left (3\,c+3\,d\,x\right )\right )}{3\,d\,\left (3\,\cos \left (c+d\,x\right )+2\,\cos \left (2\,c+2\,d\,x\right )+\cos \left (3\,c+3\,d\,x\right )+2\right )} \]

[In]

int((A + B*cos(c + d*x))*(1/cos(c + d*x))^(5/2)*(a + a*cos(c + d*x))^(1/2),x)

[Out]

(2*(a*(cos(c + d*x) + 1))^(1/2)*(1/cos(c + d*x))^(1/2)*(2*A*sin(c + d*x) + 3*B*sin(c + d*x) + 2*A*sin(2*c + 2*
d*x) + 2*A*sin(3*c + 3*d*x) + 3*B*sin(3*c + 3*d*x)))/(3*d*(3*cos(c + d*x) + 2*cos(2*c + 2*d*x) + cos(3*c + 3*d
*x) + 2))